Макроэргические соединения и связи. Роль молекулы атф в энергетическом метаболизме Сварные швы и соединения

I Макроэрги́ческие соедине́ния (греч. makros большой + ergon работа, действие; синоним: высокоэргические соединения, высокоэнергетические соединения)

группа природных веществ, молекулы которых содержат богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках и участвуют в накоплении и превращении энергии. Разрыв макроэргических связей в молекулах М.с. сопровождается выделением энергии, используемой для биосинтеза и транспорта веществ, мышечного сокращения, пищеварения и других процессов жизнедеятельности организма.

Все известные М.с. содержат фосфорильную (-РО 3 Н 2) или ацильную

группы и могут быть описаны формулой Х-Y, где Х - атом азота, кислорода, серы или углерода, а Y - атом фосфора или углерода. Реакционная способность М.с. связана с повышенным сродством к электрону атома Y, что обусловливает высокую свободную энергию гидролиза М.с., составляющую 6-14 ккал/моль .

Важной группой соединений, в которую входят М.с., являются аденозинфосфорные, или адениловые, кислоты - нуклеозиды, содержащие аденин, рибозу и остатки фосфорной кислоты (см. рис .).

Наиболее значительное из них - аденозинтрифосфорная кислота (аденозинтрифосфат, АТФ).

АТФ представляет собой аденозинфосфорную кислоту, содержащую 3 остатка фосфорной кислоты (или фосфатных остатка), служит универсальным переносчиком и основным аккумулятором химической энергии в живых клетках, кофермент многих ферментов (см. Коферменты). АТФ не единственное биологически активное соединение, содержащее пирофосфатные связи. Некоторые фосфорилированные соединения по количеству энергии, заключенной в таких связях, не отличаются от АТФ. Однако дифосфаты таких соединений не могут заменить аденозиндифосфорную кислоту в тех процессах, которые ведут к синтезу АТФ, а их трифосфаты не могут заменить АТФ в последующих процессах энергетического обмена, в которых АТФ используется как донор энергии, необходимой для протекания биосинтетических реакций. Возможно, что такая высокая степень специфичности отражает не столько уникальность АТФ, сколько уникальные особенности биохимических процессов, приспособленных исключительно к АТФ.

В отдельных биосинтетических реакциях непосредственным источником энергии служат не АТФ, а некоторые другие трифосфонуклеотиды. Однако их нельзя считать первичным источником энергии, поскольку сами они образуются в результате переноса фосфатной или пирофосфатной группы от АТФ. Это справедливо и для вещества другого типа, приспособленного для запасания энергии, - креатинфосфата (см. Креатинин). Макроэргическими в молекуле АТФ являются две пирофосфатные связи: между α- и β- и между β- и γ-фосфатными остатками. При гидролизе концевой пирофосфатной связи освобождается 8,4 ккал/моль (при рН 7,0, температуре 37°, избытке ионов Mg 2+ и концентрации АТФ, равной 1 М ). Все процессы в организме, сопровождающиеся накоплением энергии, в конечном счете ведут к образованию АТФ, который выполняет роль связующего звена между процессами, протекающими с потреблением энергии, и процессами, сопровождающимися выделением и накоплением энергии.

Отщепление фосфатных остатков от молекул АТФ происходит при участии аденозинтрифосфатаз (АТФ-аз) - ферментов класса гидролаз, широко распространенных в клетках всех организмов и обеспечивающих использование энергии АТФ для осуществления различных процессов жизнедеятельности. Группа транспортных АТФ-аз осуществляет активный перенос ионов, аминокислот, нуклеотидов, Сахаров и других веществ через биологические мембраны, создание и поддержание градиентов концентраций ионов (ионных градиентов) по обе стороны биологических мембран. Активный транспорт ионов, обеспечиваемый за счет энергии гидролиза АТФ, лежит в основе биоэнергетики (Биоэнергетика) клетки, процессов клеточного возбуждения, поступления в клетку и выведения веществ из клетки и организма, К важнейшим транспортным АТФ-азам, обеспечивающим перенос ионов при гидролизе АТФ, относятся Н + - АТФ-аза мембран митохондрий, хлоропластов и бактериальных клеток, Са 2+ - АТФ-аза внутриклеточных мембран мышечных клеток и эритроцитов, а также содержащаяся практически во всех плазматических мембранах Na + , К + АТФ-аза. В результате осуществляемого этими ферментами транспорта ионов против градиента их концентраций на мембране генерируется разность электрических потенциалов. Нарушение функционирования транспортных АТФ-аз (например, выключение АТФ-аз в условиях гипоксии в отсутствие АТФ) ведет к развитию многих патологических состояний. Известны лекарственные средства (например, сердечные гликозиды), регулирующие активность этих ферментов.

Расщепление АТФ может сопровождаться не только переносом фосфорильной группы на молекулу-акцептор, как это происходит в реакциях, катализируемых киназами (Киназы), но и переносом пирофосфатной группы (например, при синтезе пуринов), остатка адениловой кислоты (при активации аминокислот в процессе синтеза белка) или аденозина (биосинтез S-аденозилметионина).

АТФ образуется из аденозиндифосфорной кислоты (АДФ) в результате окислительного фосфорилирования при переносе электронов в митохондриальной электронпереносящей цепи (см. Дыхание тканевое, Обмен веществ и энергии) или в результате фосфорилирования на уровне субстрата (см. Гликолиз). Содержание АТФ в клетке непосредственно связано с содержанием других аденозинфосфорных кислот - АДФ и адениловой кислоты (АМФ), образующих систему адениловых нуклеотидов клетки. Суммарная концентрация адениловых нуклеотидов в клетке равна 2-15 мМ , что составляет приблизительно 87% общего фонда свободных нуклеотидов. Существенную роль в поддержании равновесия между аденозинфосфорными кислотами играет обратимая и практически равновесная реакция, катализируемая ферментом аденилаткиназой (аденилаткиназу мышечной ткани называют миокиназой): АТФ + АМФ = 2 АДФ.

Важным макроэргическим соединением, участвующим в ресинтезе АТФ в мышечной ткани, является содержащийся в скелетных мышцах всех позвоночных животных креатин-фосфат - фосфорилированное производное креатина, или β-метилгуанидинуксусной кислоты (см. Креатинин). Обратимое ферментативное взаимодействие креатина с АТФ: креатин + АТФ = креатинфосфат + АДФ, катализируемое креатинкиназой (креатинфосфокиназой), играет существенную роль в аккумуляции энергии, необходимой для мышечного сокращения.

Наряду с АТФ к макроэргическим соединениям относятся и другие нуклеозидтрифосфорные кислоты: гуанозинтрифосфат (ГТФ), уридинтрифосфат (УТФ), инозинтрифосфат (ИТФ) и тимидинтрифосфат (ТТФ), играющие роль поставщиков энергии в различных биосинтетических процессах и взаимопревращениях углеводов, липидов, а также соответствующие нуклеозиддифосфорные кислоты, пирофосфорная и полифосфорная кислоты (см. Фосфор), фосфоенолпировиноградная и 1,3-дифосфоглицериновая кислоты, ацетил- и сукцинилкофермент А, аминоацильные производные адениловой и рибонуклеиновых кислот и др.

Библиогр.: Брода Э. Эволюция биоэнергетических процессов, пер. с англ., М., 1978: Певзнер Л. Основы биоэнергетики, пер. с англ., М., 1977; Рэкер Э. Биоэнергетические механизмы, пер. с англ., М., 1979; Скулачев В.П. Трансформация энергии в биомембранах, М., 1972.

II Макроэрги́ческие соедине́ния (Макро- + греч. ergon работа, действие; син. высокоэргические соединения)

органические соединения, расщепление которых сопровождается выделением большого количества свободной энергии; в М. с. аккумулируется энергия, расходуемая организмом в процессе своей жизнедеятельности.

  • - высокоэнергетические соединения – соединения, содержащие богатые энергией связи. К ним относят АТФ и вещества, способные образовывать АТФ в ферментативных реакциях переноса преимущественно фосфатных групп...

    Словарь микробиологии

  • - макроэрги́ческие соедине́ния, органические соединения, при гидролизе которых освобождается значительное количество энергии, используемой для осуществления различных функций организма...

    Ветеринарный энциклопедический словарь

  • - при всех типах энергетического обмена энергия запасается в живой клетке в виде макроэрги-ческих соединений, соединений содержащих богатые энергией химические связи...

    Начала современного Естествознания

  • - мед. Пароксизмальная тахикардия из предсердие-желудочкового соединения - пароксизмальная тахикардия, обусловленная патологической циркуляцией волны возбуждения в области миокарда, непосредственно прилегающей...

    Справочник по болезням

  • - высокоэнергетические, отличающиеся большим запасом свободной энергии химические связи, имеющиеся в соединениях, которые входят в состав живых организмов...

    Словарь ботанических терминов

  • - органич. соединения живых клеток, содержащие богатые энергией, или макроэргические, связи. Образуются в результате фотосинтеза, хемосинтеза и биол. окисления...
  • - см. Комбинаторика...

    Естествознание. Энциклопедический словарь

  • - I Макроэрги́ческие соедине́ния группа природных веществ, молекулы которых содержат богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках и участвуют в накоплении и превращении энергии...

    Медицинская энциклопедия

  • - органические соединения, расщепление которых сопровождается выделением большого количества свободной энергии; в М. с. аккумулируется энергия, расходуемая организмом в процессе своей жизнедеятельности...

    Большой медицинский словарь

  • - в строительных конструкциях - скрепление между собой элементов строит. конструкции с целью образования узлов, увеличения размеров конструкции или изменения условий её работы...

    Большой энциклопедический политехнический словарь

  • - : Смотри также: - электронные соединения - металлоорганические...

    Энциклопедический словарь по металлургии

  • - - В некоторых вопросах алгебры приходится составлять произведения из нескольких данных чисел а, b, с,...,k. Такие произведения называются соединениями, а числа, в них входящие, - элементами...

    Энциклопедический словарь Брокгауза и Евфрона

  • - высокоэргические, высокоэнергетические соединения, природные соединения, содержащие богатые энергией, или макроэргические, связи...
  • - I Соедине́ния в строительных конструкциях служат для осуществления необходимой связи конструктивных элементов между собой, обеспечения надёжности строительной конструкции, её работы как единого целого в...

    Большая Советская энциклопедия

  • - МАКРОЭРГИЧЕСКИЕ соединения, органические соединения живых клеток, содержащие богатые энергией, или макроэргические, связи. Образуются в результате фотосинтеза, хемосинтеза и биологического окисления...
  • - служат для скрепления между собой элементов строительной конструкции в целях образования узлов, увеличения размеров конструкции или изменения условий ее работы...

    Большой энциклопедический словарь

"Макроэргические соединения" в книгах

Сварные швы и соединения

Из книги Сварочные работы. Практический справочник автора Серикова Галина Алексеевна

Сварные швы и соединения

Шиповые соединения

Из книги Домашний мастер автора Онищенко Владимир

Шиповые соединения Простейшее столярное соединение можно представить как соединение шипа в гнездо или проушину. Шип – это выступ на торце бруска, входящий в соответствующее гнездо или проушину другого бруска. Шипы бывают одинарными, двойными, многократными.

Соединения по кромке

Из книги Домашний мастер автора Онищенко Владимир

Соединения по кромке Сплачивание применяют в тех случаях, когда необходимо соединить столярный материал по ширине кромки в щиты или блоки. Наиболее распространенным методом сплачивания является сплачивание на гладкую фугу. При этом кромки стыкуемых участков плотно

Соединения гвоздями

Из книги Домашний мастер автора Онищенко Владимир

Соединения гвоздями При применении соединения гвоздями необходимо соблюдать следующие правила. Диаметр гвоздя не должен превышать 1/10 толщины прибиваемой детали. Его нельзя забивать ближе, чем на расстоянии 15 диаметров от торца и 4 диаметров до продольной кромки

Соединения внакладку

Из книги Кресла, стулья, столы, этажерки и другая плетеная мебель автора Подольский Юрий Федорович

Соединения внакладку Такие соединения применяют в различных узлах любого изделия. При соединении в простую накладку (впритык) на торец одной палки накладывают круглый конец второй и сколачивают гвоздем (рис. 12, б). При накладке в вилку на торце палки делают наклонный

ПЛОТНИЧНЫЕ СОЕДИНЕНИЯ

автора Серикова Галина Алексеевна

ПЛОТНИЧНЫЕ СОЕДИНЕНИЯ Теперь следует освоить наиболее часто встречающиеся столярные и плотничные соединения, поскольку без теоретических знаний и умения их выполнять практически невозможно изготовить самый простой предмет мебели, построить беседку или баню и др.Как

СТОЛЯРНЫЕ СОЕДИНЕНИЯ

Из книги Справочник мастера столярно-плотничных работ автора Серикова Галина Алексеевна

СТОЛЯРНЫЕ СОЕДИНЕНИЯ В отличие от современной мебели из пластмассы, которую можно изготовить целиком, деревянная мебель собирается из отдельных деталей, поэтому столяру необходимо уметь их скреплять.Качество столярного соединения – показатель мастерства столяра,

Неразъемные соединения

Из книги Справочник мастера столярно-плотничных работ автора Серикова Галина Алексеевна

Неразъемные соединения К неразъемным относятся клеевые соединения. По сравнению с другими способами соединения деталей мебели они являются наиболее простыми и популярными среди этой группы, поскольку отличаются технологичностью, прочностью, уменьшают риск

Из книги Большая Советская Энциклопедия (МА) автора БСЭ

11.2. Соединения

Из книги Самоучитель UML автора Леоненков Александр

4.4. TCP соединения

автора Andreasson Oskar

4.4. TCP соединения В этом и в последующих разделах мы поближе рассмотрим признаки состояний и порядок их обработки каждым из трех базовых протоколов TCP, UDP и ICMP, а так же коснемся случая, когда протокол соединения не может быть классифицирован на принадлежность к трем,

4.5. UDP соединения

Из книги Iptables Tutorial 1.1.19 автора Andreasson Oskar

4.5. UDP соединения По сути своей, UDP соединения не имеют признака состояния. Этому имеется несколько причин, основная из них состоит в том, что этот протокол не предусматривает установления и закрытия соединения, но самый большой недостаток – отсутствие информации об

Соединения

автора Борри Хелен

Соединения Для соединений оптимизатор выполняет процесс слияния потоков данных на основании соответствия значений, явно или неявно указанных в критерии ON. Если какой- нибудь индекс доступен для столбца или столбцов на одной стороне соединения, оптимизатор создает свой

Соединения

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

Соединения Соединение является одним из наиболее мощных средств реляционной базы данных по причине его способности поиска абстрактных нормализованных данных в хранилище и в контексте передачи приложениям ненормализованных наборов данных. В операторах JOIN две или

Соединения

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

Соединения Соединение используется в операторах SELECT для генерации ненормализованных наборов, содержащих столбцы из нескольких таблиц, которые хранят связанные данные. Множества столбцов, выбранных из каждой таблицы, называются потоками. Процесс соединения объединяет

Источником энергии для организма человека служат процессы окисления химических органических соединений до менее энергетически ценных конечных продуктов. С помощью ферментных систем происходит извлечение энергии из внешних субстратов (питательный веществ) в реакциях их ступенчатого окисления, приводящего к высвобождению энергии небольшими порциями. Внешние источники энергии должны быть трансформированы в клетке в определенную форму, удобную для обеспечения внутриклеточных энергетических нужд. Такой формой преимущественно является молекула аденозинтрифосфат (АТФ) , представляющая мононуклеотид (рис. 6).

Рис. 6. Структурная формула молекулы аденозинтрифосфорной кислоты (АТФ)

АТФ является макроэргическим соединением , оно содержит две связи богатые энергией (макроэргические связи) : между вторым и третьим остатками фосфорной кислоты. Макроэргические связи – ковалентные связи в химических соединениях клетки, которые гидролизуются с выделением значительного количества энергии – 30 кДж/моль и более. При гидролизе каждой из макроэргических связей в молекуле АТФ выделяется около 32 кДж/моль. Гидролиз АТФ осуществляют специальные ферменты, называемые АТФ-азами:

АТФ ® АДФ + Н3РО4; АДФ ® АМФ + Н3РО4

В клетке существуют и другие макроэргические соединения. Большинство из них, также как и АТФ, содержат высокоэнергетическую фосфатную связь. К этой группе соединений относятся и другие нуклеозидтрифосфаты, ацилфосфаты, фосфоенолпируват, креатинфосфат и другие молекулы. Кроме того, в живых организмах присутствуют молекулы с высокоэнергетической тиоэфирной связью, ацилтиоэфиры (рис. 7).

Однако наибольшую роль в энергетических клеточных процессов играет все же молекула АТФ. Эта молекула обладает рядом свойств, позволяющей ей занимать столь значительное место в клеточном метаболизме. Во-первых, молекула АТФ термодинамически нестабильна, о чем говорит изменение свободной энергии гидролиза АТФ DG0 = –31,8 кДж/моль. Во-вторых, молекула АТФ химически высокостабильна. Скорость неферментативного гидролиза АТФ в нормальных условиях очень мала, что позволяет эффективно сохранять энергию, препятствуя ее бесполезному рассеиванию в тепло. В-третьих, молекула АТФ обладает малыми размерами, что позволяет ей поступать в различные внутриклеточные участки путем диффузии. И, наконец, энергия гидролиза АТФ имеет промежуточное значение по сравнению с другими фосфорилированными клеточными молекулами, что позволяет АТФ переносить энергию от высокоэнергетических соединений к низкоэнергетическим.


Рис. 7. Типы соединений, для которых характерна высокая энергия гидролиза

Существуют два механизма синтеза АТФ в клетке: субстратное фосфорилирование и мембранное фосфорилирование. Субстратное фосфорилирование – ферментативный перенос фосфатной группы на молекулы АДФ с образованием АТФ, происходящий в цитоплазме. При субстратном фосфорилировании в результате определенных окислительно-восстановительных реакций образуются богатые энергией нестабильные молекулы, фосфатная группа которых с помощью соответствующих ферментов переносится на АДФ с образованием АТФ. Реакции субстратного фосфорилирования протекают в цитоплазме и катализируются растворимыми ферментами.

Мембранное фосфорилирование – синтез молекулы АТФ с использованием энергии трансмембранного градиента ионов водорода, происходящий на мембране митохондрий. Мембранное фосфорилирование происходит на мембране митохондрий, в которой локализована определенная цепь молекул-переносчиков водорода и электронов. Атомы водорода и электроны отщепляются от окисляющихся органических молекул и с помощью специальных переносчиков попадают в электронтранспортную цепь (дыхательную цепь), локализованную на внутренней мембране митохондрий. Эта цепь представляет собой комплекс мембранных белков, расположенных строго определенным образом. Эти белки являются ферментами, катализирующими окислительно-восстановительные реакции. Переходя от одного белка-переносчика дыхательной цепи к другому, электрон спускается на все более низкий энергетический уровень. Перенос электронов по электронтранспортной цепи сопряжен с выделением протонов из клетки во внешнюю среду. В результате внешняя часть клеточной мембраны приобретает положительный заряд, а внутренняя – отрицательный, возникает разделение зарядов. Кроме того, на мембране образуется градиент ионов водорода. Таким образом, энергия, высвобождаемая при переносе электронов, первоначально запасается в форме электрохимического трансмембранного градиента ионов водорода ( D mН+) . То есть происходит превращение химической и электромагнитной энергии в электрохимическую, которая может быть в дальнейшем использована клеткой для синтеза АТФ. Реакция синтеза АТФ за счет DmН+ и называется мембранным фосфорилированием; мембраны, на которых она осуществляется – энергопреобразующими или сопрягающими . Превращение энергии, освобождающейся при электронном транспорте, в энергию фосфатной связи АТФ объясняет хемоосмотическая теория энергетического сопряжения (рис. 8), разработанная английским биохимиком П. Митчеллом. Сопрягающую мембрану можно уподобить плотине, которая сдерживает напор воды, также как и мембрана сдерживает градиент ионов водорода. Если плотину открыть, то энергия воды может быть использована для выполнения работы или преобразована в другую форму энергии, например электрическую, как это и происходит в гидроэлектростанциях. Аналогично в клетке имеется механизм, позволяющий преобразовать энергию трансмембранного градиента ионов водорода в энергию химической связи АТФ. Разрядка трансмембранного градиента ионов водорода происходит с участием локализованного в той же мембране протонного АТФ-синтазного комплекса . Энергия протона, поступающего через этот ферментативный комплекс в клетку из внешней среды, используется для синтеза молекулы АТФ из АДФ и остатка фосфорной кислоты. Происходящий процесс может быть выражен уравнением:

АДФ + Фн+ nН+нар à АТФ + Н2О + nН+внутр.

АТФ-синтазный ферментативный комплекс служит механизмом, обеспечивающим взаимопревращение двух форм клеточной энергии: DmН+ « АТФ.

Рис. 8. Схема работы электронтранспортной цепи и АТФ-синтазного комплекса АН 2 и В – донор и акцептор электронов, соответственно; 1 , 2 , 3 – компоненты электронтранспортной цепи

Стартовым переносчиком дыхательной цепи митохондрий является НАД(Ф)Н-дегидрогеназа, имеющая флавиновую природу. Этот фермент акцептирует протоны и электроны от первичной дегидрогеназы, фермента, отнимающего атомы водорода непосредственно с субстрата. С НАД(Ф)Н-дегидрогеназы электроны передаются на переносчик хиноновой природы, убихинон (кофермент Q), а далее на цитохромы (рис. 9). В митохондриях имеется 5 различных цитохромов (b, c, c1, a, a3). Цитохромы представляют собой гемопротеины, их небелковая часть является гемом и содержит катион металла. Цитохромы окрашены в красно-коричневый цвет. Цитохромы классов b и c содержат катион железа, а цитохромы класса a – катион меди.

Рис. 9. Дыхательная электронтранспортная цепь митохондрий

Конечный цитохром (a+a3) переносит электроны на кислород, т.е. является цитохромоксидазой. На кислород переносится 4 электрона и образуется вода. При синтезе молекулы АТФ через АТФ-синтазный комплекс проходит по крайней мере два протона. Количество синтезируемых молекул АТФ зависит от числа участков цепи, в которых протоны выделяются во внешнею среду. В митохондрии есть 3 участка окислительной цепи, где протоны выводятся наружу и генерируется Dmн+: в начале цепи на НАД(Ф)Н-дегидогеназе, на убихиноне и на цитохромоксидазе (рис. 9). В митохондриях при окислении одной молекулы НАД(Ф)Н по цепи переносится два электрона, а во внешнею среду выводится 6Н+ и, соответственно, синтезируется три молекулы АТФ.

Любое наше движение или мысль требуют от организма затрат энергии. Этой силой запасается каждая клетка тела и накапливает ее в биомолекулах с помощью макроэргических связей. Именно эти молекулы-батарейки обеспечивают все процессы жизнедеятельности. Постоянный обмен энергией внутри клеток обуславливает саму жизнь. Что представляют собой эти биомолекулы с макроэргическими связями, откуда они берутся, и что происходит с их энергией в каждой клетке нашего тела - об этом речь в статье.

Биологические посредники

В любом организме энергия от энергогенерирующего агента к биологическому потребителю энергии не переходит напрямую. При разрыве внутримолекулярных связей пищевых продуктов выделяется потенциальная энергия химических соединений, намного превосходящая возможности внутриклеточных ферментативных систем использовать ее. Именно поэтому в биологических системах освобождение потенциальных химических веществ происходит ступенчато с поэтапным преобразованием их в энергию и накоплением ее в макроэргических соединениях и связях. И именно биомолекулы, которые способны к такой аккумуляции энергии, называют высокоэнергетичными.

Какие связи называются макроэргическими?

Уровень свободной энергии в 12,5 кДж/моль, которая образуется при образовании или распаде химической связи считается нормальной. Когда при гидролизе некоторых веществ происходит образование свободной энергии больше 21 кДж/моль, то это называют связями макроэргическими. Они обозначаются символом "тильда" - ~. В отличие от физической химии, где под макроэргической связью подразумевается ковалентная связь атомов, в биологии имеют в виду разность между энергией исходных агентов и продуктов их распада. То есть, энергия не локализована в конкретной химической связи атомов, а характеризует всю реакцию. В биохимии говорят о химическом сопряжении и образовании макроэргического соединения.

Универсальный биоисточник энергии

Все живые организмы на нашей планете имеют один универсальный элемент запасания энергии - это макроэргическая связь АТФ - АДФ - АМФ ди, монофосфорная кислота). Это биомолекулы, которые состоят из азотосодержащей основы аденина, прикрепленного к углеводу рибоза, и присоединенным остаткам ортофосфорной кислоты. Под действием воды и фермента рестриктазы молекула аденозинтрифосфорной кислоты (C 10 H 16 N 5 O 13 P 3) может распасться на молекулу аденозиндифосфорной кислоты и ортофосфатную кислоту. Эта реакция сопровождается выделением свободной энергии порядка 30,5 кДж/моль. Все процессы жизнедеятельности в каждой клетке нашего тела происходят при аккумуляции энергии в АТФ и использовании ее при разрыве связей между остатками ортофосфорной кислоты.

Донор и акцептор

К макроэргическим соединениям относят еще и вещества с длинными названиями, которые могут образовывать молекулы АТФ в реакциях гидролиза (например, пирофосфорная и пировиноградная кислоты, сукцинилкоферменты, аминоацильные производные рибонуклеиновых кислот). Все эти соединения содержат атомы фосфора (P) и серы (S), между которыми и находятся высокоэнергетические связи. Именно энергия, которая высвобождается при разрыве макроэргической связи в АТФ (донор), поглощается клеткой при синтезе собственных органических соединений. И в то же время запасы этих связей постоянно пополняются при аккумулировании энергии (акцептор), выделяющейся при гидролизе макромолекул. В каждой клетке человеческого организма эти процессы происходят в митохондриях, при этом продолжительность существования АТФ меньше 1 минуты. За сутки наш организм синтезирует порядка 40 килограммов АТФ, которые проходят до 3 тысяч циклов распада каждая. А в каждый отдельно взятый момент в нашем организме присутствует порядка 250 грамм АТФ.

Функции высокоэнергетичных биомолекул

Кроме функции донора и акцептора энергии при процессах распада и синтеза высокомолекулярных соединений, молекулы АТФ играют еще несколько очень важных ролей в клетках. Энергия разрыва макроэргических связей используется в процессах теплообразования, механической работы, накопления электричества, свечения. При этом преобразование энергии химических связей в тепловую, электрическую, механическую одновременно служит и этапом энергетического обмена с последующим запасанием в тех же макроэнергетических связях АТФ. Все эти процессы в клетке называются пластическим и энергетическим обменами (схема на рисунке). Молекулы АТФ выступают еще и в роли коферментов, регулируя активность некоторых ферментов. Кроме того, АТФ может быть и медиатором, сигнальным агентом в синапсах нервных клеток.

Поток энергии и вещества в клетке

Таким образом, АТФ в клетке занимает центральное и главное место в обмене материи. Реакций, посредством которых возникает и распадается АТФ, довольно много и субстратное, гидролиз). Биохимические реакции синтеза этих молекул обратимы, при определенных условиях они в клетках смещаются в сторону синтеза или распада. Пути этих реакций отличаются по количеству превращений веществ, типу окислительных процессов, по способам сопряжения энергоподающих и энергопотребляющих реакций. Каждый процесс имеет четкие приспособления к обработке конкретного вида «топлива» и свои пределы эффективности.

Оценка эффективности

Показатели эффективности преобразования энергии в биосистемах невелики и оцениваются в стандартных величинах коэффициента полезного действия (отношения полезной, потраченной на выполнение работы, к общей затраченной энергии). Но вот, на обеспечение выполнения биологических функций, затраты необходимы очень большие. Например, бегун, в пересчете на единицу массы, тратит столько энергии, сколько и большой океанский лайнер. Даже в состоянии покоя поддержание жизни организма - это тяжелая работа, и на нее тратится порядка 8 тысяч кДж/моль. При этом на синтез белков расходуется около 1,8 тысячи кДж/моль, на работу сердца - 1,1 тысячи кДж/моль, а вот на синтез АТФ - до 3,8 тысячикДж/моль.

Аденилатная система клеток

Это система, которая включает сумму всех АТФ, АДФ и АМФ в клетке в конкретный период времени. Величину эту и соотношение компонентов определяет энергетический статус клетки. Оценивается система по показателю энергетического заряда системы (отношение фосфатных групп к остатку аденозина). Если в клетке макроэргические соединения представлены только АТФ - она имеет наивысший энергетический статус (показатель -1), если только АМФ - минимальный статус (показатель - 0). В живых клетках, обычно, поддерживаются показатели 0,7-0,9. Стабильность энергетического статуса клетки определяет скорость ферментативных реакций и поддержку оптимального уровня жизнедеятельности.

И немного про энергетические станции

Как уже говорилось, синтез АТФ происходит в специализированных органеллах клетки - митохондриях. И сегодня в среде биологов ведутся споры по поводу происхождения этих удивительных структур. Митохондрии - это электростанции клетки, «топливом» для которых являются белки, жиры, гликоген, а электричеством - молекулы АТФ, синтез которых проходит при участии кислорода. Можно сказать, что мы дышим, чтобы митохондрии работали. Чем большую работу должны выполнять клетки, тем больше им необходимо энергии. Читай - АТФ, а значит - митохондрий.

Например, у профессионального спортсмена в скелетных мышцах содержится порядка 12% митохондрий, а у неспортивного обывателя их вполовину меньше. А вот в сердечной мышце их показатель - 25%. Современные методики тренировок спортсменов, особенно марафонцев, основан на показателях МКП (максимального потребления кислорода), который напрямую зависит от количества митохондрий и способности мышц выполнять длительные нагрузки. Ведущие тренировочные программы для профессионального спорта направлены на стимуляцию синтеза митохондрий в клетках мышц.

I Макроэрги́ческие соедине́ния (греч. makros большой + ergon работа, действие; синоним: , высокоэнергетические соединения)

группа природных веществ, молекулы которых содержат богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках и участвуют в накоплении и превращении энергии. макроэргических связей в молекулах М.с. сопровождается выделением энергии, используемой для биосинтеза и транспорта веществ, мышечного сокращения, пищеварения и других процессов жизнедеятельности организма.

Все известные М.с. содержат фосфорильную (-РО 3 Н 2) или ацильную

группы и могут быть описаны формулой Х-Y, где Х - атом азота, кислорода, серы или углерода, а Y - атом фосфора или углерода. Реакционная способность М.с. связана с повышенным сродством к электрону атома Y, что обусловливает высокую свободную энергию гидролиза М.с., составляющую 6-14 ккал/моль .

Важной группой соединений, в которую входят М.с., являются аденозинфосфорные, или адениловые, кислоты - нуклеозиды, содержащие , рибозу и остатки фосфорной кислоты (см. рис .).

АТФ представляет собой аденозинфосфорную кислоту, содержащую 3 остатка фосфорной кислоты (или фосфатных остатка), служит универсальным переносчиком и основным аккумулятором химической энергии в живых клетках, многих ферментов (см. Коферменты). АТФ не единственное биологически активное соединение, содержащее пирофосфатные связи. Некоторые фосфорилированные соединения по количеству энергии, заключенной в таких связях, не отличаются АТФ. Однако дифосфаты таких соединений не могут заменить аденозиндифосфорную кислоту в тех процессах, которые ведут к синтезу АТФ, а их трифосфаты не могут заменить АТФ в последующих процессах энергетического обмена, в которых АТФ используется как энергии, необходимой для протекания биосинтетических реакций. Возможно, что такая высокая степень специфичности отражает не столько уникальность АТФ, сколько уникальные особенности биохимических процессов, приспособленных исключительно к АТФ.

В отдельных биосинтетических реакциях непосредственным источником энергии служат не АТФ, а некоторые другие трифосфонуклеотиды. Однако их нельзя считать первичным источником энергии, поскольку сами они образуются в результате переноса фосфатной или пирофосфатной группы от АТФ. Это справедливо и для вещества другого типа, приспособленного для запасания энергии, - креатинфосфата (см. Креатинин). Макроэргическими в молекуле АТФ являются две пирофосфатные связи: между α- и β- и между β- и γ-фосфатными остатками. При гидролизе концевой пирофосфатной связи освобождается 8,4 ккал/моль (при рН 7,0, температуре 37°, избытке ионов Mg 2+ и концентрации АТФ, равной 1 М ). Все процессы в организме, сопровождающиеся накоплением энергии, в конечном счете ведут к образованию АТФ, который выполняет роль связующего звена между процессами, протекающими с потреблением энергии, и процессами, сопровождающимися выделением и накоплением энергии.

Отщепление фосфатных остатков от молекул АТФ происходит при участии аденозинтрифосфатаз (АТФ-аз) - ферментов класса гидролаз, широко распространенных в клетках всех организмов и обеспечивающих использование энергии АТФ для осуществления различных процессов жизнедеятельности. Группа транспортных АТФ-аз осуществляет активный перенос ионов, аминокислот, нуклеотидов, Сахаров и других веществ через биологические мембраны, создание и поддержание градиентов концентраций ионов (ионных градиентов) по обе стороны биологических мембран. Активный транспорт ионов, обеспечиваемый за счет энергии гидролиза АТФ, лежит в основе биоэнергетики (Биоэнергетика) клетки, процессов клеточного возбуждения, поступления в клетку и выведения веществ из клетки и организма, К важнейшим транспортным АТФ-азам, обеспечивающим перенос ионов при гидролизе АТФ, относятся Н + - АТФ-аза мембран митохондрий, хлоропластов и бактериальных клеток, Са 2+ - АТФ-аза внутриклеточных мембран мышечных клеток и эритроцитов, а также содержащаяся практически во всех плазматических мембранах Na + , К + АТФ-аза. В результате осуществляемого этими ферментами транспорта ионов против градиента их концентраций на мембране генерируется разность электрических потенциалов. Нарушение функционирования транспортных АТФ-аз (например, выключение АТФ-аз в условиях гипоксии в отсутствие АТФ) ведет к развитию многих патологических состояний. Известны (например, ), регулирующие этих ферментов.

Расщепление АТФ может сопровождаться не только переносом фосфорильной группы на молекулу-акцептор, как это происходит в реакциях, катализируемых киназами (Киназы), но и переносом пирофосфатной группы (например, при синтезе пуринов), остатка адениловой кислоты (при активации аминокислот в процессе синтеза белка) или аденозина ( S-аденозилметионина).

АТФ образуется из аденозиндифосфорной кислоты () в результате окислительного фосфорилирования при переносе электронов в митохондриальной электронпереносящей цепи (см. Дыхание тканевое , Обмен веществ и энергии) или в результате фосфорилирования на уровне субстрата (см. Гликолиз). Содержание АТФ в клетке непосредственно связано с содержанием других аденозинфосфорных кислот - АДФ и адениловой кислоты (), образующих систему адениловых нуклеотидов клетки. Суммарная адениловых нуклеотидов в клетке равна 2-15 мМ , что составляет приблизительно 87% общего фонда свободных нуклеотидов. Существенную роль в поддержании равновесия между аденозинфосфорными кислотами играет обратимая и практически равновесная , катализируемая ферментом аденилаткиназой (аденилаткиназу мышечной ткани называют миокиназой): АТФ + АМФ = 2 АДФ.

Важным макроэргическим соединением, участвующим в ресинтезе АТФ в мышечной ткани, является содержащийся в скелетных мышцах всех позвоночных животных креатин-фосфат - фосфорилированное производное креатина, или β-метилгуанидинуксусной кислоты (см. Креатинин). Обратимое ферментативное взаимодействие креатина с АТФ: + АТФ = + АДФ, катализируемое креатинкиназой (креатинфосфокиназой), играет существенную роль в аккумуляции энергии, необходимой для мышечного сокращения.

Наряду с АТФ к макроэргическим соединениям относятся и другие нуклеозидтрифосфорные кислоты: гуанозинтрифосфат (ГТФ), (), () и тимидинтрифосфат (ТТФ), играющие роль поставщиков энергии в различных биосинтетических процессах и взаимопревращениях углеводов, липидов, а также соответствующие нуклеозиддифосфорные кислоты, пирофосфорная и полифосфорная кислоты (см. Фосфор), фосфоенолпировиноградная и 1,3-дифосфоглицериновая кислоты, ацетил- и сукцинилкофермент А, аминоацильные производные адениловой и рибонуклеиновых кислот и др.

Библиогр.: Брода Э. биоэнергетических процессов, . с англ., М., 1978: Певзнер Л. Основы биоэнергетики, пер. с англ., М., 1977; Рэкер Э. Биоэнергетические механизмы, пер. с англ., М., 1979; Скулачев В.П. энергии в биомембранах, М., 1972.

II Макроэрги́ческие соедине́ния (Макро- + греч. ergon работа, действие; . высокоэргические соединения)

органические соединения, которых сопровождается выделением большого количества свободной энергии; в М. с. аккумулируется энергия, расходуемая организмом в процессе своей жизнедеятельности.

1. Малая медицинская энциклопедия. - М.: Медицинская энциклопедия. 1991-96 гг. 2. Первая медицинская помощь. - М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. - М.: Советская энциклопедия. - 1982-1984 гг .

Смотреть что такое "Макроэргические соединения" в других словарях:

    Высокоэнергетические соединения, природные соединения, содержащие богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках, участвуют в накоплении и превращении энергии. К М. с. относят гл. обр. АТФ и вещества, способные… … Биологический энциклопедический словарь

    Высокоэнергетические соединения – соединения, содержащие богатые энергией (макроэргические) связи. К ним относят АТФ и вещества, способные образовывать АТФ в ферментативных реакциях переноса преимущественно фосфатных групп. М. с. занимают… … Словарь микробиологии

    - (от макро... и греч. ergon деятельность работа), органические соединения живых клеток, содержащие богатые энергией, или макроэргические, связи. Образуются в результате фотосинтеза, хемосинтеза и биологического окисления. К макроэргическим… … Большой Энциклопедический словарь - (от Макро... и греч. érgon деятельность, работа) высокоэргические, высокоэнергетические соединения, природные соединения, содержащие богатые энергией, или макроэргические, связи; присутствуют во всех живых клетках, участвуя в процессах… … Большая советская энциклопедия

    - (от макро... и греч. ergon деятельность, работа), органич. соединения живых клеток, содержащие богатые энергией, или макроэргические, связи. Образуются в результате фотосинтеза, хемосинтеза и биол. окисления. К М. с. относятся… … Естествознание. Энциклопедический словарь

    - (макро + греч. ergon работа, действие; син. высокоэргические соединения) органические соединения, расщепление которых сопровождается выделением большого количества свободной энергии; в М. с. аккумулируется энергия, расходуемая организмом в… … Большой медицинский словарь

    - (от греч. макро + ergon деятельность, работа) при всех типах энергетического обмена энергия запасается в живой клетке в виде макроэрги ческих соединений, соединений содержащих богатые энергией химические связи. К макроэргическим соединениям… … Начала современного естествознания

    МАКРОЭРГИЧЕСКИЕ СОЕДИНЕНИЯ - макроэргические соединения, органические соединения, при гидролизе которых освобождается значительное количество энергии, используемой для осуществления различных функций организма. Ведущее положение среди М. с. занимают аденозинтрифосфорная и… … Ветеринарный энциклопедический словарь

Источником энергии для организма человека служат процессы окисления химических органических соединений до менее энергетически ценных конечных продуктов. С помощью ферментных систем происходит извлечение энергии из внешних субстратов (питательный веществ) в реакциях их ступенчатого окисления, приводящего к высвобождению энергии небольшими порциями. Внешние источники энергии должны быть трансформированы в клетке в определенную форму, удобную для обеспечения внутриклеточных энергетических нужд. Такой формой преимущественно является молекула аденозинтрифосфат (АТФ) , представляющая мононуклеотид. АТФ является макроэргическим соединением, оно содержит две связи богатые энергией (макроэргические связи): между вторым и третьим остатками фосфорной кислоты. Макроэргические связи – ковалентные связи в химических соединениях клетки, которые гидролизуются с выделением значительного количества энергии – 30 кДж/моль и более. При гидролизе каждой из макроэргических связей в молекуле АТФ выделяется около 32 кДж/моль. Гидролиз АТФ осуществляют специальные ферменты, называемые АТФ-азами:В клетке существуют и другие макроэргические соединения. Большинство из них, также как и АТФ, содержат высокоэнергетическую фосфатную связь. К этой группе соединений относятся и другие нуклеозидтрифосфаты, ацилфосфаты, фосфоенолпируват, креатинфосфат и другие молекулы. Кроме того, в живых организмах присутствуют молекулы с высокоэнергетической тиоэфирной связью, ацилтиоэфиры.Однако наибольшую роль в энергетических клеточных процессов играет все же молекула АТФ. Эта молекула обладает рядом свойств, позволяющей ей занимать столь значительное место в клеточном метаболизме. Во-первых, молекула АТФ термодинамически нестабильна, о чем говорит изменение свободной энергии гидролиза АТФ DG0 = –31,8 кДж/моль. Во-вторых, молекула АТФ химически высокостабильна. Скорость неферментативного гидролиза АТФ в нормальных условиях очень мала, что позволяет эффективно сохранять энергию, препятствуя ее бесполезному рассеиванию в тепло. В-третьих, молекула АТФ обладает малыми размерами, что позволяет ей поступать в различные внутриклеточные участки путем диффузии. И, наконец, энергия гидролиза АТФ имеет промежуточное значение по сравнению с другими фосфорилированными клеточными молекулами, что позволяет АТФ переносить энергию от высокоэнергетических соединений к низкоэнергетическим.

Существуют два механизма синтеза АТФ в клетке: субстратное фосфорилирование и мембранное фосфорилирование. Субстратное фосфорилирование – ферментативный перенос фосфатной группы на молекулы АДФ с образованием АТФ, происходящий в цитоплазме. При субстратном фосфорилировании в результате определенных окислительно-восстановительных реакций образуются богатые энергией нестабильные молекулы, фосфатная группа которых с помощью соответствующих ферментов переносится на АДФ с образованием АТФ. Реакции субстратного фосфорилирования протекают в цитоплазме и катализируются растворимыми ферментами.Мембранное фосфорилирование – синтез молекулы АТФ с использованием энергии трансмембранного градиента ионов водорода, происходящий на мембране митохондрий. Мембранное фосфорилирование происходит на мембране митохондрий, в которой локализована определенная цепь молекул-переносчиков водорода и электронов. Атомы водорода и электроны отщепляются от окисляющихся органических молекул и с помощью специальных переносчиков попадают в электронтранспортную цепь (дыхательную цепь), локализованную на внутренней мембране митохондрий. Эта цепь представляет собой комплекс мембранных белков, расположенных строго определенным образом. Эти белки являются ферментами, катализирующими окислительно-восстановительные реакции. Переходя от одного белка-переносчика дыхательной цепи к другому, электрон спускается на все более низкий энергетический уровень. Перенос электронов по электронтранспортной цепи сопряжен с выделением протонов из клетки во внешнюю среду. В результате внешняя часть клеточной мембраны приобретает положительный заряд, а внутренняя – отрицательный, возникает разделение зарядов. Кроме того, на мембране образуется градиент ионов водорода. Таким образом, энергия, высвобождаемая при переносе электронов, первоначально запасается в форме электрохимического трансмембранного градиента ионов водорода (DmН+) . То есть происходит превращение химической и электромагнитной энергии в электрохимическую, которая может быть в дальнейшем использована клеткой для синтеза АТФ. Реакция синтеза АТФ за счет DmН+ и называется мембранным фосфорилированием; мембраны, на которых она осуществляется – энергопреобразующими или сопрягающими . Превращение энергии, освобождающейся при электронном транспорте, в энергию фосфатной связи АТФ объясняет хемоосмотическая теория энергетического сопряжения (рис. 8), разработанная английским биохимиком П. Митчеллом. Сопрягающую мембрану можно уподобить плотине, которая сдерживает напор воды, также как и мембрана сдерживает градиент ионов водорода. Если плотину открыть, то энергия воды может быть использована для выполнения работы или преобразована в другую форму энергии, например электрическую, как это и происходит в гидроэлектростанциях. Аналогично в клетке имеется механизм, позволяющий преобразовать энергию трансмембранного градиента ионов водорода в энергию химической связи АТФ. Разрядка трансмембранного градиента ионов водорода происходит с участием локализованного в той же мембране протонного АТФ-синтазного комплекса . Энергия протона, поступающего через этот ферментативный комплекс в клетку из внешней среды, используется для синтеза молекулы АТФ из АДФ и остатка фосфорной кислоты. Происходящий процесс может быть выражен уравнением:

АДФ + Фн+ nН+нар à АТФ + Н2О + nН+внутр.